PRACTICE SET FOR MIDTERM 2, SOLUTIONS

C) Do the following equations admit any real solutions? If so, how many?

1) $x^{5}+\frac{1}{3} x^{3}=3-e^{x}$

Rewrite the equation as $x^{5}+\frac{1}{3} x^{3}+e^{x}-3=0$ and consider the function $f(x)=x^{5}+\frac{1}{3} x^{3}+e^{x}-3=0$. This is a continuous function on \mathbb{R} and we have $f(0)=1-3<0, f(1)=1+1 / 3+e-3>0$. Therefore by the IVT there is at least a solution in the interval $[0,1]$.
Now $f^{\prime}(x)=5 x^{4}+x^{2}+e^{x}$ which is always stricly positive. Hence, f is increasing in \mathbb{R}, and therefore the equation $f(x)=0$ has only ONE real solution.

$$
\text { 2) } 2 x^{5}+5 x^{4}-3=0
$$

Consider the function $f(x)=2 x^{5}+5 x^{4}-3$, which is continuous on \mathbb{R}. Note that $f(0)=-3<0$ and $f(1)=4>0$ so by the IVT there is at least a solution in the interval $[0,1]$.
$f^{\prime}(x)=10 x^{4}+20 x^{3}=10 x^{3}(x+2)$. We study the sign of f^{\prime}.
$F_{1}>0: 10 x^{3}>0 \Rightarrow x>0$
$F_{2}>0: x+2>0 \Rightarrow x>-2$

Therefore f is increasing in $]-\infty,-2[$, decreasing in $]-2,0[$ and increasing in $] 0, \infty[$.
There is a local max at $x=-2$, and $f(-2)=-2^{6}+5 \cdot 2^{4}-3=2^{4}(-4+5)-3>0$, and a local min at $x=0$, and $f(0)=-3<0$. Since $\lim _{x \rightarrow-\infty} f(x)=-\infty$, combining all the above info we see that $f(x)=0$ has 3 real solutions.

$$
3 *) \operatorname{arctg}(x)=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+\frac{25}{12}
$$

We will show the equation has NO real solutions. Consider the functions

$$
f(x)=\operatorname{arctg}(x) \quad \text { and } \quad g(x)=\frac{1}{4} x^{4}+\frac{1}{3} x^{3}+\frac{25}{12} .
$$

The natural domain of both of them is \mathbb{R}. The given equation has a solution if the graphs of f and g have intersection points. We know that

$$
-\frac{\pi}{2} \leq \operatorname{arctg}(x) \leq \frac{\pi}{2}
$$

Now we study the monotonicity of $g \cdot g^{\prime}(x)=x^{3}+x^{2}=x^{2}(x+1)$. Since x^{2} is always positive, $g^{\prime}(x)>0$ when $x>-1$.
So f has a GLOBAL MIN at $x=-1$, and $f(-1)=\frac{1}{4}-\frac{1}{3}+\frac{25}{12}=2>\frac{\pi}{2}$. This means that $g(x) \geq 2>\operatorname{arctg}(x)$ for all $x \in \mathbb{R}$, and the curves can never intersect.

$$
4 *) x^{2}=\sin (x)
$$

The equation is equivalent to $x^{2}-\sin (x)=0$. Consider the function

$$
f(x)=x^{2}-\sin (x)
$$

with natural domain \mathbb{R}. We readily see that $x=0$ is a solution of the equation.
Now we study the monotonicity of $f . f^{\prime}(x)=2 x-\cos (x)$. Unfortunately we cannot solve the inequality $2 x-\cos (x)>0$ explicitly. So we study the behaviour of the function

$$
g(x)=f^{\prime}(x)=2 x-\cos (x) .
$$

Note that g is continuous on \mathbb{R} and $g(0)=-1<0, g(\pi / 2)=\pi>0$, so there exists $c \in[0, \pi / 2]$ such that $g(c)=0$ by the IVT. Also, $g^{\prime}(x)=2+\sin (x)$ which is always positive. So g is always increasing, which means that $g(x)<0$ for $x<c$ and $g(x)>0$ for $x>c$.

But $g=f^{\prime}$, so this implies that $f(x)$ is decreasing for $x<c$ and increasing for $x>c$. Note that $\lim _{x \rightarrow+\infty} f(x)=+\infty$. Therefore the equation $f(x)=0$ has 2 real solutions.

D) Prove that $\ln (x+1) \leq x$ for every $x>-1$.

This is equivalent to proving that $\ln (x+1)-x \leq 0$. Consider the function $f(x)=\ln (x+1)-x$ whose domain is $x>-1$. Let's study the monotonicity of this function. $f^{\prime}(x)=\frac{1}{x+1}-1=\frac{-x}{x+1}$. Solve the inequality

$$
\frac{-x}{x+1}>0
$$

$$
\begin{aligned}
& N>0:-x>0 \Rightarrow x<0 \\
& D>0: x+1>0 \Rightarrow x>-1
\end{aligned}
$$

Therefore f is increasing in $]-1,0[$ and decreasing in $] 0, \infty[$, so it has a local (and global) \max at $x=0$. Since $f(0)=0$, we get $f(x) \leq 0$ for all $x<-1$.

Alternative solution: consider the function $g(x)=\ln (x+1)$, with domain $x>-1$. Note that $g(0)=0$ and $g^{\prime}(0)=1$ because $g^{\prime}(x)=\frac{1}{x+1}$. Therefore the tangent line to g at the point $(0,0)$ is $y=x$. Since $g^{\prime \prime}(x)=\frac{-1}{(x+1)^{2}}$ which is always negative, g is concave down in its domain. By definition of concavity this means than g lies below all its tangent lines, in particular below the line $y=x$. This means $g(x) \leq x$.
E) Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a function such that $f^{\prime}(x)<0 \quad \forall x \in \mathbb{R}$ and such that $\lim _{x \rightarrow-\infty} f(x)=+\infty$. Is it true that the equation $f(x)=0$ has exactly one real solution?
It's FALSE. A counterexample is given by $f(x)=e^{-x}$. It satisfies all the requirements, but the equation $f(x)=0$ has no real solutions.
$\left.\mathrm{F}^{*}\right)$ Can you find a differentiable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $\mathrm{f}(5)=5, \mathrm{f}(-5)=-5$ and $f^{\prime}(x) \geq x^{2}+2$?
NO, such function doesn't exist. Indeed since f is differentiable everywhere, then it is also continuous everywhere. In particular f is contiuous in $[-5,5]$ and differentiable in $]-5,5[$ so the hypotheses of Lagrange's Mean Value Theorem apply. Therefore we conclude that there is $c \in[-5,5]$ such that

$$
f^{\prime}(c)=\frac{f(5)-f(-5)}{5-(-5)}=1
$$

But $f^{\prime}(x)$ is always greater than 2 , so this is impossible.
$\left.\mathrm{G}^{*}\right)$ Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be an even and differentiable function. Assuming the derivative is a continuous function, compute

$$
\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{\sin (x)}
$$

Since f is differentiable, it is continuous. So $\lim _{x \rightarrow 0}(f(x)-f(0))=f(0)-f(0)=0$. Also, $\lim _{x \rightarrow 0} \sin (x)=0$ so we can try to apply L'Hospital's rule and compute the limit

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{\cos (x)}=\frac{f^{\prime}(0)}{\cos (0)}=f^{\prime}(0)
$$

where we computed the limit using the fact that f^{\prime} is continuous, so $\lim _{x \rightarrow 0} f^{\prime}(x)=f^{\prime}(0)$. Now, since f is EVEN, we have that f^{\prime} is ODD. Indeed, differentiating the relation $f(-x)=f(x)$ we get by the chain rule

$$
f^{\prime}(-x) \cdot(-1)=f^{\prime}(x)
$$

which means precisely that f^{\prime} is odd. But an odd function has to be 0 at $x=0$, so $f^{\prime}(0)=0$. Therefore the result of the given limit is 0 by L'Hospital's rule.
$\left.\mathrm{H}^{*}\right)$ Let $f: \mathbb{R} \longrightarrow \mathbb{R}$. Suppose that $f(0)=1, f^{\prime}(0)=5$ and $f^{\prime \prime}(x)<0$ for every $x \in \mathbb{R}$. Prove that $f(x) \leq 5 x+1$ for every $x \in \mathbb{R}$.
Since $f^{\prime \prime}<0$ for every $x \in \mathbb{R}, f$ is concave down in \mathbb{R}. By definition this means that the graph of f lies below each tangent line. Since $f(0)=1$ and $f^{\prime}(0)=5$, the tangent line at $x=0$ is $y=5 x+1$. Therefore $f(x) \leq 5 x+1$ for every $x \in \mathbb{R}$.

