PRACTICE SET FOR MIDTERM 2, SOLUTIONS

C) Do the following equations admit any real solutions? If so, how many?

1)
$$x^5 + \frac{1}{3}x^3 = 3 - e^x$$

Rewrite the equation as $x^5 + \frac{1}{3}x^3 + e^x - 3 = 0$ and consider the function $f(x) = x^5 + \frac{1}{3}x^3 + e^x - 3 = 0$. This is a continuous function on \mathbb{R} and we have f(0) = 1 - 3 < 0, f(1) = 1 + 1/3 + e - 3 > 0. Therefore by the IVT there is at least a solution in the interval [0,1]. Now $f'(x) = 5x^4 + x^2 + e^x$ which is always strictly positive. Hence, f is increasing in \mathbb{R} , and therefore the equation f(x) = 0 has only ONE real solution.

2) $2x^5 + 5x^4 - 3 = 0$

Consider the function $f(x) = 2x^5 + 5x^4 - 3$, which is continuous on \mathbb{R} . Note that f(0) = -3 < 0 and f(1) = 4 > 0 so by the IVT there is at least a solution in the interval [0, 1]. $f'(x) = 10x^4 + 20x^3 = 10x^3(x+2)$. We study the sign of f'. $F_1 > 0: 10x^3 > 0 \Rightarrow x > 0$

 $F_2 > 0: x + 2 > 0 \Rightarrow x > -2$

-2 0		
F1 _	-	+
F2 _	+	+
f' +	-	+
f /	\mathbf{Y}	1

Therefore f is increasing in $]-\infty, -2[$, decreasing in]-2, 0[and increasing in $]0, \infty[$. There is a local max at x = -2, and $f(-2) = -2^6 + 5 \cdot 2^4 - 3 = 2^4(-4+5) - 3 > 0$, and a local min at x = 0, and f(0) = -3 < 0. Since $\lim_{x \to -\infty} f(x) = -\infty$, combining all the above info we see that f(x) = 0 has 3 real solutions.

3*)
$$\operatorname{arctg}(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{25}{12}$$

We will show the equation has NO real solutions. Consider the functions

$$f(x) = \operatorname{arctg}(x)$$
 and $g(x) = \frac{1}{4}x^4 + \frac{1}{3}x^3 + \frac{25}{12}$

The natural domain of both of them is \mathbb{R} . The given equation has a solution if the graphs of f and g have intersection points. We know that

$$-\frac{\pi}{2} \le \operatorname{arctg}(x) \le \frac{\pi}{2}$$

Now we study the monotonicity of g. $g'(x) = x^3 + x^2 = x^2(x+1)$. Since x^2 is always positive, g'(x) > 0 when x > -1.

So f has a GLOBAL MIN at x = -1, and $f(-1) = \frac{1}{4} - \frac{1}{3} + \frac{25}{12} = 2 > \frac{\pi}{2}$. This means that $g(x) \ge 2 > \arctan(x)$ for all $x \in \mathbb{R}$, and the curves can never intersect.

4*) $x^2 = \sin(x)$

The equation is equivalent to $x^2 - \sin(x) = 0$. Consider the function

$$f(x) = x^2 - \sin(x)$$

with natural domain \mathbb{R} . We readily see that x = 0 is a solution of the equation. Now we study the monotonicity of f. $f'(x) = 2x - \cos(x)$. Unfortunately we cannot solve the inequality $2x - \cos(x) > 0$ explicitly. So we study the behaviour of the function

$$g(x) = f'(x) = 2x - \cos(x).$$

Note that g is continuous on \mathbb{R} and g(0) = -1 < 0, $g(\pi/2) = \pi > 0$, so there exists $c \in [0, \pi/2]$ such that g(c) = 0 by the IVT. Also, $g'(x) = 2 + \sin(x)$ which is always positive. So g is always increasing, which means that g(x) < 0 for x < c and g(x) > 0 for x > c.

But g = f', so this implies that f(x) is decreasing for x < c and increasing for x > c. Note that $\lim_{x \to +\infty} f(x) = +\infty$. Therefore the equation f(x) = 0 has 2 real solutions.

D) Prove that $\ln(x+1) \leq x$ for every x > -1.

This is equivalent to proving that $\ln(x+1) - x \leq 0$. Consider the function $f(x) = \ln(x+1) - x$ whose domain is x > -1. Let's study the monotonicity of this function. $f'(x) = \frac{1}{x+1} - 1 = \frac{-x}{x+1}$. Solve the inequality

$$\frac{-x}{x+1} > 0.$$

 $N > 0 : -x > 0 \Rightarrow x < 0$ $D > 0 : x + 1 > 0 \Rightarrow x > -1$

Therefore f is increasing in]-1, 0[and decreasing in $]0, \infty[$, so it has a local (and global) max at x = 0. Since f(0) = 0, we get $f(x) \le 0$ for all x < -1.

Alternative solution: consider the function $g(x) = \ln(x+1)$, with domain x > -1. Note that g(0) = 0 and g'(0) = 1 because $g'(x) = \frac{1}{x+1}$. Therefore the tangent line to g at the point (0,0) is y = x. Since $g''(x) = \frac{-1}{(x+1)^2}$ which is always negative, g is concave down in its domain. By definition of concavity this means than g lies below all its tangent lines, in particular below the line y = x. This means $g(x) \le x$.

E) Suppose $f : \mathbb{R} \longrightarrow \mathbb{R}$ is a function such that $f'(x) < 0 \quad \forall x \in \mathbb{R}$ and such that $\lim_{x \to -\infty} f(x) = +\infty$. Is it true that the equation f(x) = 0 has exactly one real solution? It's FALSE. A counterexample is given by $f(x) = e^{-x}$. It satisfies all the requirements, but the equation f(x) = 0 has no real solutions.

F*) Can you find a differentiable function $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that f(5)=5, f(-5)=-5 and $f'(x) \ge x^2 + 2$?

NO, such function doesn't exist. Indeed since f is differentiable everywhere, then it is also continuous everywhere. In particular f is continuous in [-5, 5] and differentiable in]-5, 5[so the hypotheses of Lagrange's Mean Value Theorem apply. Therefore we conclude that there is $c \in [-5, 5]$ such that

$$f'(c) = \frac{f(5) - f(-5)}{5 - (-5)} = 1.$$

But f'(x) is always greater than 2, so this is impossible.

G*) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be an even and differentiable function. Assuming the derivative is a continuous function, compute

$$\lim_{x \to 0} \frac{f(x) - f(0)}{\sin(x)}$$

Since f is differentiable, it is continuous. So $\lim_{x\to 0} (f(x) - f(0)) = f(0) - f(0) = 0$. Also, $\lim_{x\to 0} \sin(x) = 0$ so we can try to apply L'Hospital's rule and compute the limit

$$\lim_{x \to 0} \frac{f'(x)}{\cos(x)} = \frac{f'(0)}{\cos(0)} = f'(0)$$

where we computed the limit using the fact that f' is continuous, so $\lim_{x\to 0} f'(x) = f'(0)$. Now, since f is EVEN, we have that f' is ODD. Indeed, differentiating the relation f(-x) = f(x) we get by the chain rule

$$f'(-x) \cdot (-1) = f'(x)$$

which means precisely that f' is odd. But an odd function has to be 0 at x = 0, so f'(0) = 0. Therefore the result of the given limit is 0 by L'Hospital's rule.

H*) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$. Suppose that f(0) = 1, f'(0) = 5 and f''(x) < 0 for every $x \in \mathbb{R}$. Prove that $f(x) \leq 5x + 1$ for every $x \in \mathbb{R}$.

Since f'' < 0 for every $x \in \mathbb{R}$, f is concave down in \mathbb{R} . By definition this means that the graph of f lies below each tangent line. Since f(0) = 1 and f'(0) = 5, the tangent line at x = 0 is y = 5x + 1. Therefore $f(x) \le 5x + 1$ for every $x \in \mathbb{R}$.