PRACTICE SET FOR MIDTERM 2, SOLUTIONS

C) Do the following equations admit any real solutions? If so, how many?
R .
1) 2° + 511 =3—¢"

Rewrite the equation as z° + %x‘g + ¢* — 3 = 0 and consider the function
f(x) =2 + 32 + ¥ — 3 = 0. This is a continuous function on R and we have
f(0)=1-3<0, f(1)=1+4+1/3+¢e—3> 0. Therefore by the IVT there is at least a
solution in the interval [0,1].
Now f'(x) = 5x* + 2? + €* which is always stricly positive. Hence, f is increasing in R, and
therefore the equation f(x) = 0 has only ONE real solution.

2) 22° + 52t -3 =0
Consider the function f(x) = 22° + 52* — 3, which is continuous on R. Note that
f(0) =—=3<0and f(1) =4 > 0 so by the IVT there is at least a solution in the interval
[0,1].
f'(z) = 102* + 2023 = 1023(z + 2). We study the sign of f’.
F,>0:1022>0=2>0
F,>024+2>0=2> -2

-2 0
N
Fd
F1l = - +
F2 = + +
f 4 - +
o I

Therefore f is increasing in | — oo, —2[, decreasing in | — 2, 0[ and increasing in |0, oco|.

There is a local max at r = —2, and f(—2) = —-2645-2—3=2%-4+5)—-3>0,and a

local min at x = 0, and f(0) = —3 < 0. Since lim f(x) = —o0, combining all the above
Tr—r—00

info we see that f(z) = 0 has 3 real solutions.
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1 1 5. 25
3%) arctg(r) = —a* + —2% + =

4 3 12
We will show the equation has NO real solutions. Consider the functions
1 1 25
= arct d =gt -2t
f(z) = arctg(x) and g(x) 1° + 3% + 1

The natural domain of both of them is R. The given equation has a solution if the graphs
of f and g have intersection points. We know that

arc T .
2= & -2

Now we study the monotonicity of g. ¢'(z) = 23 + 22 = 2?(x + 1). Since z? is always
positive, ¢’(z) > 0 when z > —1.

So f has a GLOBAL MIN at z = —1, and f(—1) = ; — 3 + 2 =2 > Z. This means that
g(x) > 2> arctg(z) for all z € R, and the curves can never intersect.
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4%) x* = sin(z)
The equation is equivalent to 22 — sin(z) = 0. Consider the function
f(z) = 2* — sin(x)
with natural domain R. We readily see that x = 0 is a solution of the equation.

Now we study the monotonicity of f. f'(x) = 2z — cos(z). Unfortunately we cannot solve
the inequality 2z — cos(x) > 0 explicitly. So we study the behaviour of the function

g(x) = f'(x) = 2z — cos(x).
Note that ¢ is continuous on R and g(0) = —1 < 0, g(7/2) = m > 0, so there exists
¢ € [0,7/2] such that g(c) = 0 by the IVT. Also, ¢'(x) = 2+ sin(x) which is always positive.
So g is always increasing, which means that g(z) < 0 for x < ¢ and g(x) > 0 for x > c.

A

always increasing

But g = f’, so this implies that f(x) is decreasing for x < ¢ and increasing for > ¢. Note
that lirf f(z) = 4o00. Therefore the equation f(z) = 0 has 2 real solutions.
T—r+00
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D) Prove that In(z + 1) < z for every z > —1.
This is equivalent to proving that In(z + 1) — x < 0. Consider the function
f(z) =In(x 4+ 1) —  whose domain is x > —1. Let’s study the monotonicity of this

function. f'(x) = x%l — 1= 5. Solve the inequality
—x
> 0.
r+1

N>0:—z2z>0=2z2<0
D>0:24+1>0=z> -1
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Therefore f is increasing in | — 1, 0[ and decreasing in |0, co[, so it has a local (and global)
max at x = 0. Since f(0) =0, we get f(z) <0 for all x < —1.

Alternative solution: consider the function g(x) = In(z + 1), with domain z > —1. Note

— _ _ 1 .
that g(0) =0 and ¢'(0) = 1 because g'(z) = -25. Therefore the tangent line to g at the
point (0,0) is y = 2. Since ¢"(z) = ﬁ which is always negative, ¢ is concave down in its
domain. By definition of concavity this means than g lies below all its tangent lines, in

particular below the line y = x. This means g(x) < z.

E) Suppose f: R — R is a function such that f’(z) <0 Vz € R and such that
lim f(z) = +o0. Is it true that the equation f(x) = 0 has exactly one real solution?
T——00

It’s FALSE. A counterexample is given by f(x) = e®. It satisfies all the requirements, but
the equation f(z) = 0 has no real solutions.

F*) Can you find a differentiable function f : R — R such that f(5)=5, f(-5)=-5 and
f(z) > x*+27

NO, such function doesn’t exist. Indeed since f is differentiable everywhere, then it is also
continuous everywhere. In particular f is contiuous in [—5, 5] and differentiable in | — 5, 5[
so the hypotheses of Lagrange’s Mean Value Theorem apply. Therefore we conclude that
there is ¢ € [—5, 5] such that

o= L0=1C9

But f’(x) is always greater than 2, so this is impossible.



G*) Let f : R — R be an even and differentiable function. Assuming the derivative is a
continuous function, compute
x)— f(0

=0 sin(z)

Since f is differentiable, it is continuous. So glgr(l)(f(:v) — f(0)) = f(0) — f(0) = 0. Also,
chiil(l) sin(x) = 0 so we can try to apply L'Hospital’s rule and compute the limit
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}cli% Cos((x)) a COS((O)) =10
where we computed the limit using the fact that f’ is continuous, so ili% f'(x) = f'(0).
Now, since f is EVEN, we have that f’ is ODD. Indeed, differentiating the relation
f(=z) = f(x) we get by the chain rule

f(=x) - (=1) = f'(x)

which means precisely that f’ is odd. But an odd function has to be 0 at = = 0, so
f/(0) = 0. Therefore the result of the given limit is 0 by L’Hospital’s rule.

H*) Let f : R — R. Suppose that f(0) =1, f/(0) =5 and f"(z) < 0 for every x € R.
Prove that f(x) < b5z + 1 for every x € R.

Since f” < 0 for every x € R, f is concave down in R. By definition this means that the
graph of f lies below each tangent line. Since f(0) =1 and f/(0) = 5, the tangent line at
x=01is y = bz + 1. Therefore f(x) < 5z + 1 for every x € R.



