
PRACTICE SET FOR MIDTERM 2, SOLUTIONS

C) Do the following equations admit any real solutions? If so, how many?

1) x5 +
1

3
x3 = 3− ex

Rewrite the equation as x5 + 1
3
x3 + ex − 3 = 0 and consider the function

f(x) = x5 + 1
3
x3 + ex − 3 = 0. This is a continuous function on R and we have

f(0) = 1− 3 < 0, f(1) = 1 + 1/3 + e− 3 > 0. Therefore by the IVT there is at least a
solution in the interval [0,1].
Now f ′(x) = 5x4 + x2 + ex which is always stricly positive. Hence, f is increasing in R, and
therefore the equation f(x) = 0 has only ONE real solution.

2) 2x5 + 5x4 − 3 = 0

Consider the function f(x) = 2x5 + 5x4 − 3, which is continuous on R. Note that
f(0) = −3 < 0 and f(1) = 4 > 0 so by the IVT there is at least a solution in the interval
[0, 1].
f ′(x) = 10x4 + 20x3 = 10x3(x+ 2). We study the sign of f ′.
F1 > 0 : 10x3 > 0⇒ x > 0
F2 > 0 : x+ 2 > 0⇒ x > −2

Therefore f is increasing in ]−∞,−2[, decreasing in ]− 2, 0[ and increasing in ]0,∞[.
There is a local max at x = −2, and f(−2) = −26 + 5 · 24 − 3 = 24(−4 + 5)− 3 > 0, and a
local min at x = 0, and f(0) = −3 < 0. Since lim

x→−∞
f(x) = −∞, combining all the above

info we see that f(x) = 0 has 3 real solutions.
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3∗) arctg(x) =
1

4
x4 +

1

3
x3 +

25

12
We will show the equation has NO real solutions. Consider the functions

f(x) = arctg(x) and g(x) =
1

4
x4 +

1

3
x3 +

25

12
.

The natural domain of both of them is R. The given equation has a solution if the graphs
of f and g have intersection points. We know that

−π
2
≤ arctg(x) ≤ π

2
.

Now we study the monotonicity of g. g′(x) = x3 + x2 = x2(x+ 1). Since x2 is always
positive, g′(x) > 0 when x > −1.
So f has a GLOBAL MIN at x = −1, and f(−1) = 1

4
− 1

3
+ 25

12
= 2 > π

2
. This means that

g(x) ≥ 2 > arctg(x) for all x ∈ R, and the curves can never intersect.



4∗) x2 = sin(x)

The equation is equivalent to x2 − sin(x) = 0. Consider the function

f(x) = x2 − sin(x)

with natural domain R. We readily see that x = 0 is a solution of the equation.
Now we study the monotonicity of f . f ′(x) = 2x− cos(x). Unfortunately we cannot solve
the inequality 2x− cos(x) > 0 explicitly. So we study the behaviour of the function

g(x) = f ′(x) = 2x− cos(x).

Note that g is continuous on R and g(0) = −1 < 0, g(π/2) = π > 0, so there exists
c ∈ [0, π/2] such that g(c) = 0 by the IVT. Also, g′(x) = 2 + sin(x) which is always positive.
So g is always increasing, which means that g(x) < 0 for x < c and g(x) > 0 for x > c.

But g = f ′, so this implies that f(x) is decreasing for x < c and increasing for x > c. Note
that lim

x→+∞
f(x) = +∞. Therefore the equation f(x) = 0 has 2 real solutions.



D) Prove that ln(x+ 1) ≤ x for every x > −1.
This is equivalent to proving that ln(x+ 1)− x ≤ 0. Consider the function
f(x) = ln(x+ 1)− x whose domain is x > −1. Let’s study the monotonicity of this
function. f ′(x) = 1

x+1
− 1 = −x

x+1
. Solve the inequality

−x
x+ 1

> 0.

N > 0 : −x > 0⇒ x < 0

D > 0 : x+ 1 > 0⇒ x > −1

Therefore f is increasing in ]− 1, 0[ and decreasing in ]0,∞[, so it has a local (and global)
max at x = 0. Since f(0) = 0, we get f(x) ≤ 0 for all x < −1.

Alternative solution: consider the function g(x) = ln(x+ 1), with domain x > −1. Note
that g(0) = 0 and g′(0) = 1 because g′(x) = 1

x+1
. Therefore the tangent line to g at the

point (0, 0) is y = x. Since g′′(x) = −1
(x+1)2

which is always negative, g is concave down in its

domain. By definition of concavity this means than g lies below all its tangent lines, in
particular below the line y = x. This means g(x) ≤ x.

E) Suppose f : R −→ R is a function such that f ′(x) < 0 ∀x ∈ R and such that
lim

x→−∞
f(x) = +∞. Is it true that the equation f(x) = 0 has exactly one real solution?

It’s FALSE. A counterexample is given by f(x) = e−x. It satisfies all the requirements, but
the equation f(x) = 0 has no real solutions.

F*) Can you find a differentiable function f : R −→ R such that f(5)=5, f(-5)=-5 and
f ′(x) ≥ x2 + 2?
NO, such function doesn’t exist. Indeed since f is differentiable everywhere, then it is also
continuous everywhere. In particular f is contiuous in [−5, 5] and differentiable in ]− 5, 5[
so the hypotheses of Lagrange’s Mean Value Theorem apply. Therefore we conclude that
there is c ∈ [−5, 5] such that

f ′(c) =
f(5)− f(−5)

5− (−5)
= 1.

But f ′(x) is always greater than 2, so this is impossible.



G*) Let f : R −→ R be an even and differentiable function. Assuming the derivative is a
continuous function, compute

lim
x→0

f(x)− f(0)

sin(x)
.

Since f is differentiable, it is continuous. So lim
x→0

(f(x)− f(0)) = f(0)− f(0) = 0. Also,

lim
x→0

sin(x) = 0 so we can try to apply L’Hospital’s rule and compute the limit

lim
x→0

f ′(x)

cos(x)
=

f ′(0)

cos(0)
= f ′(0)

where we computed the limit using the fact that f ′ is continuous, so lim
x→0

f ′(x) = f ′(0).

Now, since f is EVEN, we have that f ′ is ODD. Indeed, differentiating the relation
f(−x) = f(x) we get by the chain rule

f ′(−x) · (−1) = f ′(x)

which means precisely that f ′ is odd. But an odd function has to be 0 at x = 0, so
f ′(0) = 0. Therefore the result of the given limit is 0 by L’Hospital’s rule.

H*) Let f : R −→ R. Suppose that f(0) = 1, f ′(0) = 5 and f ′′(x) < 0 for every x ∈ R.
Prove that f(x) ≤ 5x+ 1 for every x ∈ R.
Since f ′′ < 0 for every x ∈ R, f is concave down in R. By definition this means that the
graph of f lies below each tangent line. Since f(0) = 1 and f ′(0) = 5, the tangent line at
x = 0 is y = 5x+ 1. Therefore f(x) ≤ 5x+ 1 for every x ∈ R.


